How do you find int (x+4)/(x^2+2x+5) dx∫x+4x2+2x+5dx using partial fractions?
1 Answer
Explanation:
Since we are requested to use partial fractions to solve this, I guess the hope is that we can simplify the integrand.
However, the quadratic
They say fools rush in where angels fear to tread, so here I go...
x^2+2x+5 = (x+1)^2+2^2x2+2x+5=(x+1)2+22
color(white)(x^2+2x+5) = (x+1)^2-(2i)^2x2+2x+5=(x+1)2−(2i)2
color(white)(x^2+2x+5) = ((x+1)-2i)((x+1)+2i)x2+2x+5=((x+1)−2i)((x+1)+2i)
color(white)(x^2+2x+5) = (x+1-2i)(x+1+2i)x2+2x+5=(x+1−2i)(x+1+2i)
So:
(x+4)/(x^2+2x+5) = A/(x+1-2i)+B/(x+1+2i)x+4x2+2x+5=Ax+1−2i+Bx+1+2i
Using Heaviside's cover up method, we find:
A = (color(blue)(-1+2i)+4)/(color(blue)(-1+2i)+1+2i) = (3+2i)/(4i)= 1/2-3/4iA=−1+2i+4−1+2i+1+2i=3+2i4i=12−34i
B = bar(A) = 1/2+3/4iB=¯¯¯A=12+34i
So:
int (x+4)/(x^2+2x+5) dx∫x+4x2+2x+5dx
= int (1/2-3/4i) * 1/(x+1-2i) + (1/2+3/4i) * 1/(x+1+2i) dx=∫(12−34i)⋅1x+1−2i+(12+34i)⋅1x+1+2idx
= (1/2-3/4i) ln (x+1-2i) + (1/2+3/4i) ln (x+1+2i) + C=(12−34i)ln(x+1−2i)+(12+34i)ln(x+1+2i)+C
= 1/2(ln (x+1-2i) + ln (x+1+2i))+3/4 i (ln(x+1+2i)-ln(x+1-2i)) + C=12(ln(x+1−2i)+ln(x+1+2i))+34i(ln(x+1+2i)−ln(x+1−2i))+C
= 1/2 ln (x^2+2x+5)+3/4 i (ln(x+1+2i)-ln(x+1-2i)) + C=12ln(x2+2x+5)+34i(ln(x+1+2i)−ln(x+1−2i))+C
Use:
tan^(-1)(z) = 1/2i(ln(1-iz)-ln(1+iz))tan−1(z)=12i(ln(1−iz)−ln(1+iz))
So:
3/4 i (ln(x+1+2i)-ln(x+1-2i))34i(ln(x+1+2i)−ln(x+1−2i))
= 3/4 i (ln(1+i(2/(x+1))) - ln(1-i(2/(x+1))))=34i(ln(1+i(2x+1))−ln(1−i(2x+1)))
= -3/2 1/2 i (ln(1-i(2/(x+1))) - ln(1+i(2/(x+1))))=−3212i(ln(1−i(2x+1))−ln(1+i(2x+1)))
= -3/2 tan^(-1)(2/(x+1))=−32tan−1(2x+1)
= 3/2 tan^(-1)((x+1)/2) + (3pi)/4=32tan−1(x+12)+3π4
Hence:
int (x+4)/(x^2+2x+5) dx = 1/2 ln (x^2+2x+5) + 3/2 tan^(-1)((x+1)/2) + C∫x+4x2+2x+5dx=12ln(x2+2x+5)+32tan−1(x+12)+C