How do you find int x/(x^2-x-2)dxxx2x2dx using partial fractions?

1 Answer
Oct 2, 2016

int x/(x^2-x-2) dx = 2/3 ln abs (x-2)+1/3 ln abs(x+1) + Cxx2x2dx=23ln|x2|+13ln|x+1|+C

Explanation:

x/(x^2-x-2) = x/((x-2)(x+1)) = 2/(3(x-2))+1/(3(x+1))xx2x2=x(x2)(x+1)=23(x2)+13(x+1)

So:

int x/(x^2-x-2) dx = int 2/(3(x-2))+1/(3(x+1)) dxxx2x2dx=23(x2)+13(x+1)dx

color(white)(int x/(x^2-x-2) dx) = 2/3 ln abs (x-2)+1/3 ln abs(x+1) + Cxx2x2dx=23ln|x2|+13ln|x+1|+C