How do you find int x/(x^2-x-2)dx∫xx2−x−2dx using partial fractions?
1 Answer
Oct 2, 2016
Explanation:
x/(x^2-x-2) = x/((x-2)(x+1)) = 2/(3(x-2))+1/(3(x+1))xx2−x−2=x(x−2)(x+1)=23(x−2)+13(x+1)
So:
int x/(x^2-x-2) dx = int 2/(3(x-2))+1/(3(x+1)) dx∫xx2−x−2dx=∫23(x−2)+13(x+1)dx
color(white)(int x/(x^2-x-2) dx) = 2/3 ln abs (x-2)+1/3 ln abs(x+1) + C∫xx2−x−2dx=23ln|x−2|+13ln|x+1|+C