The equation to be integrated can be written as:
x/((x+2)(x+9))=A/(x+2)+B/(x+9)=(A(x+9)+B(x+2))/((x+2)(x+9)x(x+2)(x+9)=Ax+2+Bx+9=A(x+9)+B(x+2)(x+2)(x+9)
Equating coefficients
x->A(x+9)+B(x+2)=(A+B)x+(9A+2B)x→A(x+9)+B(x+2)=(A+B)x+(9A+2B)
x=(A+B)xx=(A+B)x
Therefore, dividing by xx:
Additionally,
Simultaneous Equations
(2)-2times(1)(2)−2×(1)
9A+2B=09A+2B=0 (2)(2)
-2A-2B=-2−2A−2B=−2 (1)(1)
Cancel out the BB terms:
7A=-27A=−2
A=-2/7A=−27
Subbing AA back into (1)(1):
B=9/7B=97
Integrating
Subbing AA and BB back into the original equation:
int9/(7(x+9))-2/(7(x+2))dx∫97(x+9)−27(x+2)dx
=int9/(7(x+9))dx-int2/(7(x+2))dx=∫97(x+9)dx−∫27(x+2)dx
=9/7int1/(x+9)dx-2/7int1/(x+2)dx=97∫1x+9dx−27∫1x+2dx
=9/7ln(x+9) +=97ln(x+9)+constant -2/7ln(x+2)+−27ln(x+2)+constant
=9/7ln(x+9) - 2/7ln(x+2)+=97ln(x+9)−27ln(x+2)+constant