How do you find the antiderivative of #int 1/(x^2+10x+21) dx#?
1 Answer
Oct 12, 2016
Explanation:
#1/(x^2+10x+21) = 1/((x+3)(x+7))#
#color(white)(1/(x^2+10x+21)) = 1/4(((x+7)-(x+3))/((x+3)(x+7)))#
#color(white)(1/(x^2+10x+21)) = 1/4(1/(x+3)-1/(x+7))#
So:
#int 1/(x^2+10x+21) dx = int 1/4(1/(x+3)-1/(x+7)) dx#
#color(white)(int 1/(x^2+10x+21) dx) = 1/4 ln abs(x+3) + 1/4 ln abs(x+7) + C#