How do you find the antiderivative of x34+x2dx?

1 Answer
Dec 2, 2016

I=x34+x2dx

Let u=4+x2, implying that du=2xdx. Also note that x2=u4. Rearranging the integral:

I=12x2(2xdx)4+x2=12u4udu=12(14u)du

Splitting up the integral:

I=12du21udu=12u2ln|u|=12(4+x2)2ln4+x2+C

Letting the constant from 12(4+x2) absorb into C:

I=12x22ln(x2+4)+C