How do you find the arc length of the curve f(x)=coshxf(x)=coshx over the interval [0, 1]?

1 Answer
Oct 28, 2016

I used WolframAlpha
s = int_0^1 sqrt(1 + sinh^2(x))dx ≈ 1.1752s=101+sinh2(x)dx1.1752

Explanation:

From the reference on Arc Length we write the equation:

s = int_a^b sqrt(1 + (dy/dx)^2)dxs=ba1+(dydx)2dx

Given: a = 0, b = 1, and y = cosh(x)a=0,b=1,andy=cosh(x)

We know that (dy)/(dx) = sinh(x)dydx=sinh(x)

The arc length integral is:

s = int_0^1 sqrt(1 + sinh^2(x))dx ≈ 1.1752s=101+sinh2(x)dx1.1752