How do you find the arc length of the curve f(x)=x^3/6+1/(2x)f(x)=x36+12x over the interval [1,3]?
1 Answer
The arc length is
Explanation:
The arc length of a curve on the interval
The derivative of
f'(x) = 1/2x^2 - 1/(2x^2) = (x^4 - 1)/(2x^2)
Substitute this into the above formula.
int_1^3 sqrt(1 + ((x^4 - 1)/(2x^2))^2)dx
Expand.
int_1^3 sqrt(1 + (x^8 - 2x^4 + 1)/(4x^4))dx
Put on a common denominator.
int_1^3sqrt((x^8 + 2x^4 + 1)/(4x^4)dx
Factor the numerator as the perfect square trinomial, and recognize the denominator can be written of the form
int_1^3 sqrt((x^4 + 1)^2/(2x^2)^2)dx
Eliminate the square root using
int_1^3 (x^4+ 1)/(2x^2)dx
Factor out a
1/2int_1^3 (x^4 + 1)/x^2dx
Separate into different fractions.
1/2int_1^3 x^4/x^2 + 1/x^2dx
Simplify using
1/2int_1^3 x^2 + x^-2dx
Integrate using
1/2[1/3x^3 - 1/x]_1^3
Evaluate using the second fundamental theorem of calculus, which states that for
1/2(1/3(3)^3 - 1/3 - (1/3(1)^3 - 1/1))
Combine fractions and simplify.
1/2(9 - 1/3 - 1/3 + 1)
1/2(10 -2/3)
5 - 1/3
14/3
Hopefully this helps!