How do you find the arc length of the curve y=e^(3x) over the interval [0,1]?

1 Answer
Sep 24, 2016

19.14

Explanation:

simple arc length formulation:

s = int_C ds = int_(x_1)^(x_2) sqrt( 1+ (y')^2) dx

here y' = 3 e^(3x)

s = int_(0)^(1) sqrt( 1+ (3e^(3x))^2) dx

the integration is not nice, here is computer solution:

int sqrt(1+(3 e^(3 x))^2) dx = 1/3 (sqrt(9 e^(6 x)+1)-tanh^(-1)(sqrt(9 e^(6 x)+1)))+C

The numerical solution is: 19.14