How do you find the arc length of the curve #y=lnx# over the interval [1,2]?
2 Answers
Apply the arc length formula.
Explanation:
#y=lnx#
#y'=1/x#
Arc length is given by:
#L=int_1^2sqrt(1+1/x^2)dx#
Rearrange:
#L=int_1^2sqrt(x^2+1)/xdx#
Multiply numerator and denominator by
#L=int_1^2(x^2+1)/(xsqrt(x^2+1))dx#
Integration is distributive:
#L=int_1^2x/sqrt(x^2+1)dx+int_1^2 1/(xsqrt(x^2+1))dx#
Apply the substitution
#L=[sqrt(x^2+1)]_ 1^2+intsectheta/tanthetad theta#
Simplify:
#L=sqrt5-sqrt2+intcscthetad theta#
Integrate directly:
#L=sqrt5-sqrt2-[ln|csctheta+cottheta|]#
Rewrite in terms of
#L=sqrt5-sqrt2-[ln|(1+sectheta)/tantheta|]#
Reverse the substitution:
#L=sqrt5-sqrt2-[ln((1+sqrt(x^2+1))/x)]_1^2#
Insert the limits of integration:
#L=sqrt5-sqrt2-ln((1+sqrt5)/(2(1+sqrt2)))#
Rearrange for clarity:
#L=sqrt5-sqrt2+ln2-ln((1+sqrt5)/(1+sqrt2))#
Length =
Explanation:
The arc length of a function
I will use this solution