How do you find the arc length of the curve y=x^3y=x3 over the interval [0,2]?

1 Answer
Mar 9, 2018

A first-order approximation to the arc length gives 8+tan^(-1)(2sqrt3)8+tan1(23) units.

Explanation:

y=x^3y=x3

y'=3x^2

Arc length is given by:

L=int_0^2sqrt(1+9x^4)dx

Apply the substitution sqrt3x=u:

L=1/sqrt3int_0^(2sqrt3)sqrt(1+u^4)du

Complete the square in the square root:

L=1/sqrt3int_0^(2sqrt3)sqrt((u^2+1)^2-2u^2)du

Factor out the larger piece:

L=1/sqrt3int_0^(2sqrt3)(u^2+1)sqrt(1-(2u^2)/(u^2+1)^2)du

For x in [0,2sqrt3], (2u^2)/(u^2+1)^2<1. Take the series expansion of the square root:

L=1/sqrt3int_0^(2sqrt3)(u^2+1){sum_(n=0)^oo((1/2),(n))(-(2u^2)/(u^2+1)^2)^n}du

Isolate the n=0 and n=1 cases:

L=1/sqrt3int_0^(2sqrt3){(u^2+1)-u^2/(u^2+1)}du+1/sqrt3sum_(n=2)^oo((1/2),(n))(-2)^nint_0^(2sqrt3)u^(2n)/(u^2+1)^(2n-1)du

Hence

L=1/sqrt3int_0^(2sqrt3)(u^2+1/(u^2+1))du+1/sqrt3sum_(n=2)^oo((1/2),(n))(-2)^nint_0^(2sqrt3)u^(2n)/(u^2+1)^(2n-1)du

Ignoring the higher-order terms, a first-order approximation gives:

L~~1/sqrt3[1/3u^3+tan^(-1)u]_ 0^(2sqrt3)

Insert the limits of integration:

L~~8+tan^(-1)(2sqrt3)