How do you find the arc length of the curve #y=x^3# over the interval [0,2]?

1 Answer
Mar 9, 2018

A first-order approximation to the arc length gives #8+tan^(-1)(2sqrt3)# units.

Explanation:

#y=x^3#

#y'=3x^2#

Arc length is given by:

#L=int_0^2sqrt(1+9x^4)dx#

Apply the substitution #sqrt3x=u#:

#L=1/sqrt3int_0^(2sqrt3)sqrt(1+u^4)du#

Complete the square in the square root:

#L=1/sqrt3int_0^(2sqrt3)sqrt((u^2+1)^2-2u^2)du#

Factor out the larger piece:

#L=1/sqrt3int_0^(2sqrt3)(u^2+1)sqrt(1-(2u^2)/(u^2+1)^2)du#

For #x in [0,2sqrt3]#, #(2u^2)/(u^2+1)^2<1#. Take the series expansion of the square root:

#L=1/sqrt3int_0^(2sqrt3)(u^2+1){sum_(n=0)^oo((1/2),(n))(-(2u^2)/(u^2+1)^2)^n}du#

Isolate the #n=0# and #n=1# cases:

#L=1/sqrt3int_0^(2sqrt3){(u^2+1)-u^2/(u^2+1)}du+1/sqrt3sum_(n=2)^oo((1/2),(n))(-2)^nint_0^(2sqrt3)u^(2n)/(u^2+1)^(2n-1)du#

Hence

#L=1/sqrt3int_0^(2sqrt3)(u^2+1/(u^2+1))du+1/sqrt3sum_(n=2)^oo((1/2),(n))(-2)^nint_0^(2sqrt3)u^(2n)/(u^2+1)^(2n-1)du#

Ignoring the higher-order terms, a first-order approximation gives:

#L~~1/sqrt3[1/3u^3+tan^(-1)u]_ 0^(2sqrt3)#

Insert the limits of integration:

#L~~8+tan^(-1)(2sqrt3)#