How do you find the arc length of the curve y=x^5/6+1/(10x^3)y=x56+110x3 over the interval [1,2]?

1 Answer
Mar 21, 2018

1219/2401219240

Explanation:

y = x^5/6+1/{10x^3} impliesy=x56+110x3

dy/dx= (5x^4)/6-3/(10x^4) impliesdydx=5x46310x4

1+(dy/dx)^2 = 1+( (5x^4)/6-3/(10x^4))^21+(dydx)2=1+(5x46310x4)2

Now, since 1 = 4 times (5x^4)/6 times 3/(10x^4)1=4×5x46×310x4, the expression on the right above simplifies !

1+(dy/dx)^2 =( (5x^4)/6+3/(10x^4))^21+(dydx)2=(5x46+310x4)2

Thus, the required arc length

L = int_a^b sqrt{1+(dy/dx)^2}dx = int_1^2( (5x^4)/6+3/(10x^4)) dx = (x^5/6-1/(10x^3))_1^2 =(2^5/6-1/(10times 2^3))-(1/6-1/10) = 1219/240 L=ba1+(dydx)2dx=21(5x46+310x4)dx=(x56110x3)21=(256110×23)(16110)=1219240