How do you find the discriminant, describe the number and type of root, and find the exact solution using the quadratic formula given 3/4x^2-1/3x-1=0?

1 Answer
May 9, 2018

Delta=1/9+3=28/9>0=> "two distinct real roots"

x=2/9+4/9sqrt7
or
x=2/9-4/9sqrt7

Explanation:

for a quadratic equation

ax^2+bx+c=0

the discriminant is given by

Delta=b^2-4ac---(1)

Delta>0=>two distinct real roots

Delta=0=>one root (ie two equal roots)

Delta<0=> two distinct complex roots( conjugate pairs if a,b,cinRR)

we have

3/4x^2-1/3x-1=0

multiply the eqn by12

a=3/4,b=-1/3, c=-1

(1)rarrDelta=(-1/3)^3-4(3/4)(-1)

Delta=1/9+3=28/9>0

#:. two distinct real roots

#quadratic eqn

x=(-b+-sqrtDelta)/(2a)

x=(1/3+-sqrt(28/9))/(3/2)

x=(1/3+-(2sqrt7)/3)/(3/2)

x=2/9+-4/9sqrt7