How do you find the integral of 2xx2+6x+13dx

1 Answer
Feb 16, 2015

The answer is: ln(x2+6x+13)3arctan(12(x+3))+c

Follow my passages:

2xx2+6x+13dx=2x+66x2+6x+13dx=

=2x+6x2+6x+13dx6dxx2+6x+13=(1)

x2+6x+13=x2+6x+9+4=(x+3)2+4=

=4[14(x+3)2+1]=4[(12(x+3))2+1].

So:

(1)=ln(x2+6x+13)6dx4[(12(x+3))2+1]=

=ln(x2+6x+13)64dx(12(x+3))2+1=

=ln(x2+6x+13)32212(12(x+3))2+1dx=

=ln(x2+6x+13)3arctan(12(x+3))+c