How do you find the integral of ∫2xx2+6x+13dx Calculus Techniques of Integration Integral by Partial Fractions 1 Answer Massimiliano Feb 16, 2015 The answer is: ln(x2+6x+13)−3arctan(12(x+3))+c Follow my passages: ∫2xx2+6x+13dx=∫2x+6−6x2+6x+13dx= =∫2x+6x2+6x+13dx−6∫dxx2+6x+13=(1) x2+6x+13=x2+6x+9+4=(x+3)2+4= =4[14(x+3)2+1]=4[(12(x+3))2+1]. So: (1)=ln(x2+6x+13)−6∫dx4[(12(x+3))2+1]= =ln(x2+6x+13)−64∫dx(12(x+3))2+1= =ln(x2+6x+13)−32⋅2∫12(12(x+3))2+1dx= =ln(x2+6x+13)−3arctan(12(x+3))+c Answer link Related questions How do I find the partial fraction decomposition of 2x(x+3)(3x+1) ? How do I find the partial fraction decomposition of 1x3+2x2+x ? How do I find the partial fraction decomposition of x4+1x5+4x3 ? How do I find the partial fraction decomposition of x4x4−1 ? How do I find the partial fraction decomposition of t4+t2+1(t2+1)(t2+4)2 ? How do I find the integral ∫t2t+4dt ? How do I find the integral ∫x−9(x+5)(x−2)dx ? How do I find the integral ∫1(w−4)(w+1)dw ? How do I find the integral ∫dxx2(x−1)2 ? How do I find the integral ∫x3+4x2+4dx ? See all questions in Integral by Partial Fractions Impact of this question 12062 views around the world You can reuse this answer Creative Commons License