How do you find the length of the curve for y= 1/8(4x^2–2ln(x)) for [2, 6]?
1 Answer
Apr 3, 2018
The arc length is
Explanation:
We have:
A = int_2^6 sqrt(1 + (dy/dx)^2)dx
And by derivative rules
y= 1/2x^2 - 1/4lnx
y' = x - 1/(4x)
Hence:
A = int_2^6 sqrt(1 + (x - 1/(4x))^2)dx
A = int_2^6 sqrt(1 + ((4x^2 - 1)/(4x))^2) dx
A = int_2^6 sqrt((16x^2 + 16x^4 - 8x^2 + 1)/(4x)^2)dx
A = int_2^6 sqrt(16x^4 + 8x^2 + 1)/(4x)dx
A = int_2^6 sqrt((4x^2 +1)^2)/(4x^2) dx
A = int_2^6 (4x^2 + 1)/(4x) dx
A = int_2^6 x + 1/(4x) dx
A = [1/2x^2 + 1/4ln|x|]_2^6
A = 1/2(6)^2 +1/4ln|6| - 1/2(2)^2 - 1/4ln|2|
A =18 + 1/4ln|6| - 2 - 1/4ln|2|
A = 16.27
Hopefully this helps!