How do you find the length of the curve for y= 1/8(4x^2–2ln(x)) for [2, 6]?

1 Answer
Apr 3, 2018

The arc length is 4.46 units.

Explanation:

We have:

A = int_2^6 sqrt(1 + (dy/dx)^2)dx

And by derivative rules

y= 1/2x^2 - 1/4lnx

y' = x - 1/(4x)

Hence:

A = int_2^6 sqrt(1 + (x - 1/(4x))^2)dx

A = int_2^6 sqrt(1 + ((4x^2 - 1)/(4x))^2) dx

A = int_2^6 sqrt((16x^2 + 16x^4 - 8x^2 + 1)/(4x)^2)dx

A = int_2^6 sqrt(16x^4 + 8x^2 + 1)/(4x)dx

A = int_2^6 sqrt((4x^2 +1)^2)/(4x^2) dx

A = int_2^6 (4x^2 + 1)/(4x) dx

A = int_2^6 x + 1/(4x) dx

A = [1/2x^2 + 1/4ln|x|]_2^6

A = 1/2(6)^2 +1/4ln|6| - 1/2(2)^2 - 1/4ln|2|

A =18 + 1/4ln|6| - 2 - 1/4ln|2|

A = 16.27

Hopefully this helps!