How do you find the length of the curve for #y= 1/8(4x^2–2ln(x))# for [2, 6]?
1 Answer
Apr 3, 2018
The arc length is
Explanation:
We have:
#A = int_2^6 sqrt(1 + (dy/dx)^2)dx#
And by derivative rules
#y= 1/2x^2 - 1/4lnx#
#y' = x - 1/(4x)#
Hence:
#A = int_2^6 sqrt(1 + (x - 1/(4x))^2)dx#
#A = int_2^6 sqrt(1 + ((4x^2 - 1)/(4x))^2) dx#
#A = int_2^6 sqrt((16x^2 + 16x^4 - 8x^2 + 1)/(4x)^2)dx#
#A = int_2^6 sqrt(16x^4 + 8x^2 + 1)/(4x)dx#
#A = int_2^6 sqrt((4x^2 +1)^2)/(4x^2) dx#
#A = int_2^6 (4x^2 + 1)/(4x) dx#
#A = int_2^6 x + 1/(4x) dx#
#A = [1/2x^2 + 1/4ln|x|]_2^6#
#A = 1/2(6)^2 +1/4ln|6| - 1/2(2)^2 - 1/4ln|2|#
#A =18 + 1/4ln|6| - 2 - 1/4ln|2|#
#A = 16.27#
Hopefully this helps!