How do you find the length of the curve y=lnabs(secx)y=ln|secx| from 0<=x<=pi/40xπ4?

1 Answer
Feb 2, 2017

ln(sqrt2+1)=0.8814ln(2+1)=0.8814 length units, nearly..

Explanation:

In the given interval, |secx|=secx|secx|=secx.

y'=1/secx (secx)'=secxtanx/secx=tanx1

Length = int sqrt(1+(y')^2) dx,

with y = ln|secx| and x from 0 to pi/4

=int sqrt(1+tan^2x) dx, for the limits

=int secx dx, for the limita

=[ln(secx+tanx)], between x = 0 and pi/4

=ln(sec(pi/4)+tan(pi/4))=ln(sqrt2+1)