How do you find the lengths of the curve y=intsqrt(t^-4+t^-2)dt from [1,2x] for the interval 1<=x<=3?

1 Answer
Apr 11, 2018

= 7/3

Explanation:

Arc length is:

s= int _{a}^{b} sqrt {1+(y')^{2}} dx qquad triangle

For function:

y=int_(1)^(2x) sqrt(t^-4+t^-2)dt

...use Liebnitz's Rule, specifically tailored here:

(d)/(dx) int _{u(x)}^{v(x)} \ f(t) \ dt = f(v)\ v'(x) - f(u) \ u'(x)

= sqrt((2x)^-4+(2x)^-2)* 2 = 2 sqrt(1/(16x^4)+1/(4x^2))

So triangle becomes:

s= int _{1}^{3} sqrt {1+1/(x^2)+1/(4x^4)} dx

s= int _{1}^{3} sqrt { (1+1/(2x^2))^2} dx

s= [ x - 1/(2x) ]_{1}^{3} = 7/3