How do you find the local extrema for (e^x)(x^2)(ex)(x2)?

1 Answer
Feb 20, 2017

" Local Mninma is 0, Local Maxima is 4/e^2." Local Mninma is 0, Local Maxima is 4/e^2.

Explanation:

Suppose that, f(x)=x^2e^x.f(x)=x2ex.

For Local Maxima, f'(x)=0, &, f''(x)<0.

For Local Minima, f'(x)=0, &, f''(x)>0.

f(x)=x^2e^x :. f'(x)=x^2e^x+2xe^x=x(x+2)e^x.

f'(x)=(x^2+2x)e^x, :. f''(x)=(x^2+2x)e^x+(2x+2)e^x.

:. f''(x)=(x^2+4x+2)e^x.

Now, f'(x)=0 rArr x(x+2)e^x=0 rArr x=0, or, x=-2.

f''(0)=2>0, rArr" f has a local Minima at x=0, and, it is f(0)=0."

Similarly, f''(-2)=-2e^-2<0 :. f(-2)=4/e^2" is local Maxima."

Enjoy Maths.!