How do you find the local extrema for f(x) = x - ln(x)f(x)=xln(x) on [0.1,4]?

1 Answer
Jul 12, 2016

Local Minima =f(1)=1.=f(1)=1.

Fun. ff can not have Local Maxima.

Explanation:

Given fun. f(x)=x-lnx, x in [0.1,4].f(x)=xlnx,x[0.1,4].

We recall that for local extrema, i.e., maxima/minima, (i) f'(x)=0, (ii) f''(x)<0 for maxima, &, f''(x)>0 for minima.

Now, f'(x)=0 rArr 1-1/x=0 rArr x=1 in [0.1,4]

f'(x)=1-1/x rArr f''(x)=0-(-1/x^2)=1/x^2 rArr f''(1)=1>0.

Therefore, f has a local minima at x=1, and it is f(1)=1-ln1=1-0=1.

Since, f''(x)=1/x^2>0, AA x in [0.1,4], f can not have any local maxima.