How do you find the tangent line approximation for f(x)=sqrt(1+x)f(x)=1+x near x=0x=0 ?

1 Answer
Sep 24, 2014

We need to find the derivative of f(x)f(x). We need to use the Chain Rule to find the derivative of f(x)f(x).

f(x)=sqrt(1+x)=(1+x)^(1/2)f(x)=1+x=(1+x)12

f'(x)=(1/2)(1+x)^((1/2-1))*1

f'(x)=(1/2)(1+x)^((1/2-2/2))

f'(x)=(1/2)(1+x)^((-1/2))

f'(x)=1/(2sqrt(1+x))

f'(0)=1/(2sqrt(1+0))=1/(2sqrt(1))=1/2=0.5