How do you find the tangent line approximation to f(x)=cos(x)f(x)=cos(x) at x=pi/4x=π4 ?

1 Answer
Sep 24, 2014

In this problem we need to follow 5 steps.

1) Find the value of y given the x-value of pi/4π4. This gives you the point of tangency.

2) Find the derivative of f(x)f(x)

3) Substitute in the x-value of pi/4π4 to find the numeric slope.

4) Substitute the slope and the xx and yy values to find the y-intercept.

5) Use the y-intercept and slope to find the equation of the of the tangent line.

f(x)=cos(x)f(x)=cos(x)

f(pi/4)=cos(pi/4)=sqrt(2)/2f(π4)=cos(π4)=22

Point of tangency: (pi/4,sqrt(2)/2)(π4,22)

f'(x)=-sin(x)

f'(pi/4)=-sin(pi/4)=-sqrt(2)/2 => slope or m

y=mx+b

sqrt(2)/2=(-sqrt(2)/2)(pi/4)+b

sqrt(2)/2=((-sqrt(2)pi)/8)+b

((sqrt(2)pi)/8)+sqrt(2)/2=b

1.2625=b

y=mx+b

y=(-sqrt(2))/2x+1.2625 =>Equation of the tangent line