How do you find the tangent line approximation to #f(x)=cos(x)# at #x=pi/4# ?

1 Answer
Sep 24, 2014

In this problem we need to follow 5 steps.

1) Find the value of y given the x-value of #pi/4#. This gives you the point of tangency.

2) Find the derivative of #f(x)#

3) Substitute in the x-value of #pi/4# to find the numeric slope.

4) Substitute the slope and the #x# and #y# values to find the y-intercept.

5) Use the y-intercept and slope to find the equation of the of the tangent line.

#f(x)=cos(x)#

#f(pi/4)=cos(pi/4)=sqrt(2)/2#

Point of tangency: #(pi/4,sqrt(2)/2)#

#f'(x)=-sin(x)#

#f'(pi/4)=-sin(pi/4)=-sqrt(2)/2 => slope or m#

#y=mx+b#

#sqrt(2)/2=(-sqrt(2)/2)(pi/4)+b#

#sqrt(2)/2=((-sqrt(2)pi)/8)+b#

#((sqrt(2)pi)/8)+sqrt(2)/2=b#

#1.2625=b#

#y=mx+b#

#y=(-sqrt(2))/2x+1.2625 =>#Equation of the tangent line