How do you find the trigonometric form of -7+7i7+7i?

1 Answer
Jul 16, 2018

The trigonometric form is z=7sqrt2(cos(3/4pi)+isin(3/4pi))z=72(cos(34π)+isin(34π)), [mod 2pi]

Explanation:

To convert a complex number

z=x+iy

to the polar form

z=r(costheta+isintheta)

Apply the following :

{(r=|z|=sqrt(x^2+y^2)),(costheta=x/(|z|)),(sintheta=y/(|z|)):}

Here,

z=-7+7i

|z|=sqrt((-7)^2+(7)^2)=sqrt(49+49)=sqrt98=7sqrt2

Therefore,

z=7sqrt2(-1/sqrt2+i/sqrt2)

=>, {(costheta=-1/sqrt2),(sintheta=1/sqrt2):}

=>, theta=3/4pi

The trigonometric form is

z=7sqrt2(cos(3/4pi)+isin(3/4pi)), [mod 2pi]