How do you find the two square roots of -2+2sqrt3i?

1 Answer
Feb 16, 2018

+-sqrt(-2+2sqrt(3)i) = +-2bar(omega) = +-(1+sqrt(3)i)

Explanation:

Note that:

-2+2sqrt(3)i = 4omega

where:

omega = cos((2pi)/3)+i sin((2pi)/3) = -1/2+sqrt(3)/2i

is the primitive complex cube root of 1

So omega^3 = 1 and (omega^2)^2 = omega^3 omega = omega

That is:

+-sqrt(omega) = +-omega^2 = +-bar(omega) = +-(-1/2-sqrt(3)/2i) = +-(1/2+sqrt(3)/2i)

+-sqrt(-2+2sqrt(3)i) = +-sqrt(4)bar(omega) = +-(1+sqrt(3)i)