How do you find three cube roots of 1?

1 Answer
Jun 26, 2017

Three cube roots of 1 are

1, (-1-isqrt3)/2 and (-1+isqrt3)/2

Explanation:

Let x=root(3)1, then x^3=1 or

x^3-1=0

or (x-1)(x^2+x+1)=0

Hence either x=1

or x^2+x+1=0 and using quadratic formula

x=(-1+-sqrt(1-4xx1xx1))/2

= (-1+-sqrt(-3))/2

= (-1+-isqrt3)/2

Hence three cube roots of 1 are

1, (-1-isqrt3)/2 and (-1+isqrt3)/2