How do you find three cube roots of 1+i1+i?

1 Answer
Mar 6, 2017

root(6)2(cos(pi/12)+isin(pi/12))62(cos(π12)+isin(π12)), root(6)2(cos((3pi)/4)+isin((3pi)/4))62(cos(3π4)+isin(3π4)) and root(6)2(cos((17pi)/12)+isin((17pi)/12))62(cos(17π12)+isin(17π12))

Explanation:

We can use here De Moivre's theorem, which states that if z=r(costheta+isintheta)z=r(cosθ+isinθ), then z^n=r^n(cosntheta+isinntheta)zn=rn(cosnθ+isinnθ).

It may be worth mentioning that the theorem is valid for fractions as well. As we are going to find cube roots, what we seek is (1+i)^(1/3)(1+i)13.

For that let us first write 1+i1+i in polar form. As 1+i=1+1i1+i=1+1i, r=sqrt(1^2+1^2)=sqrt2r=12+12=2 and theta=tan^(-1)(1/1)=pi/4θ=tan1(11)=π4

Hence 1+i=sqrt2(cos(pi/4)+isin(pi/4))1+i=2(cos(π4)+isin(π4))

and therefore root(3)(1+i)=(sqrt2)^(1/3)(cos((2npi+(pi/4))/3)+isin((2npi+(pi/4))/3))31+i=(2)13(cos(2nπ+(π4)3)+isin(2nπ+(π4)3))

Now, choosing n=0,1,2}n=0,1,2}, we get three roots as

root(6)2(cos(pi/12)+isin(pi/12))62(cos(π12)+isin(π12)),

root(6)2(cos((3pi)/4)+isin((3pi)/4))62(cos(3π4)+isin(3π4))

and root(6)2(cos((17pi)/12)+isin((17pi)/12))62(cos(17π12)+isin(17π12))