How do you graph f(x)=cos(x-30)?

1 Answer
Jun 26, 2018

As below.

Explanation:

"Standard form of cosine function is " f(x) = A cos (Bx - C) + D

"Given : " f(x) = cos (x - 30^@) = cos (x - pi/6)

A = 1, B = 1, C = pi/3, D = 0

"Amplitude " = |A| = 1

"Period " = (2pi) / |B| = 2pi

"Phase Shift " = -C / B = -pi/3, " " color(crimson)(pi/3 " to the LEFT"

"Vertical Shift " = D = 0

graph{cos (x - pi/6) [-10, 10, -5, 5]}