How do you graph y=2+sin(1/2x)y=2+sin(12x)?
1 Answer
Draw a sine wave with twice the wavelength. Then shift it UP two units.
Explanation:
You know what the graph of
- when
xx is0, y = 00,y=0 - when
xx ispi/2, y=1π2,y=1 - when
xx ispi, y=0π,y=0 - when
xx is(3*pi)/2, y=-13⋅π2,y=−1 - when
xx is2*pi, y=02⋅π,y=0
graph{sin(x) [-10, 10, -5, 5]}
So now, for
- when
xx is0, x/20,x2 is0 , y= 00,y=0 - when
xx ispi, x/2π,x2 ispi/2, y= 1π2,y=1 - when
xx is2 * pi, x/22⋅π,x2 ispi , y= 0π,y=0 - when
xx is3 * pi, x/23⋅π,x2 is(3*pi)/2 , y= -13⋅π2,y=−1 - when
xx is4 * pi, x/24⋅π,x2 is2 * pi , y= 02⋅π,y=0
So, it's the same sine wave, but stretched out.
Now, since your function is
- when
xx is0, y= 20,y=2 - when
xx ispi, y= 3π,y=3 - when
xx is2 * pi, y= 22⋅π,y=2 - when
xx is3 * pi, y= 13⋅π,y=1 - when
xx is4 * pi , y= 24⋅π,y=2
graph{2 + sin(x/2) [-10, 10, -5, 5]}