How do you graph y=sin2(x-(3pi)/4)y=sin2(x3π4)?

1 Answer
Mar 23, 2018

See below.

Explanation:

Standard form of equation is y = A sin (Bx - C) + Dy=Asin(BxC)+D

Given equation is y = sin (2x - ((3pi)/2))y=sin(2x(3π2))

Amplitude =| A| = 1 Amplitude=|A|=1

"Period = P = (2pi) / |B| = (2pi) / 2 = piPeriod=P=2π|B|=2π2=π

"Phase Shift " = (-C/B) = ((3pi)/2) / 2 = (3pi)/4Phase Shift =(CB)=3π22=3π4

"Vertical Shift " = D = 0Vertical Shift =D=0

graph{sin(2x - ((3pi)/2 graph{sin(2x - ((3pi)/2)) [-10, 10, -5, 5]} )) [-10, 10, -5, 5]}