How do you integrate 1 / [ (1-2x)(1-x) ]1(12x)(1x) using partial fractions?

1 Answer
Jan 25, 2017

The answer is =-ln(|1-2x|)+ln(|1-x|)+C=ln(|12x|)+ln(|1x|)+C

Explanation:

Let's start the decomposition into partial fractions

1/((1-2x)(1-x))=A/(1-2x)+B/(1-x)1(12x)(1x)=A12x+B1x

=(A(1-x)+B(1-2x))/((1-2x)(1-x))=A(1x)+B(12x)(12x)(1x)

The denominators are the same ; so, we compare the numerators

1=A(1-x)+B(1-2x)1=A(1x)+B(12x)

Let x=1x=1, =>, 1=-B1=B, =>, B=-1B=1

Let x=1/2x=12, =>, 1=1/2A1=12A, =>, A=2A=2

Therefore,

1/((1-2x)(1-x))=(2)/(1-2x)-(1)/(1-x)1(12x)(1x)=212x11x

so,

intdx/((1-2x)(1-x))=2intdx/(1-2x)-1intdx/(1-x)dx(12x)(1x)=2dx12x1dx1x

=2ln(|1-2x|)/(-2)+ln(|1-x|)+C=2ln(|12x|)2+ln(|1x|)+C