How do you integrate 1/(x^3 +4x)1x3+4x using partial fractions?

3 Answers
Nov 13, 2017

The answer is =1/4ln(|x|)-1/8ln(x^2+4)+C=14ln(|x|)18ln(x2+4)+C

Explanation:

Perform the decomposition into partial fractions

1/(x^3+4x)=1/(x(x^2+4))=A/x+(Bx+C)/(x^2+4)1x3+4x=1x(x2+4)=Ax+Bx+Cx2+4

=(A(x^2+4)+x(Bx+C))/(x(x^2+4))=A(x2+4)+x(Bx+C)x(x2+4)

The denominators are the same, compare the numerators

1=A(x^2+4)+x(Bx+C)1=A(x2+4)+x(Bx+C)

Let, x=0x=0, =>, 1=4A1=4A, =>, A=1/4A=14

Coefficients of x^2x2

0=A+B0=A+B, =>, B=-A=-1/4B=A=14

Coefficients of xx

0=C0=C

Therefore,

1/(x^3+4x)=(1/4)/x+((-1/4)x)/(x^2+4)1x3+4x=14x+(14)xx2+4

So,

int(dx)/(x^3+4x)=int(1/4dx)/x+int((-1/4dx)x)/(x^2+4)dxx3+4x=14dxx+(14dx)xx2+4

=1/4int(dx)/x-1/4int(xdx)/(x^2+4)=14dxx14xdxx2+4

Perform the second integral by substitution

Let u=x^2+4u=x2+4, =>, du=2xdxdu=2xdx

So

1/4int(xdx)/(x^2+4)=1/8int(du)/u=1/8lnu=1/8ln(x^2+4)14xdxx2+4=18duu=18lnu=18ln(x2+4)

int(dx)/(x^3+4x)=1/4ln(|x|)-1/8ln(x^2+4)+Cdxx3+4x=14ln(|x|)18ln(x2+4)+C

Nov 13, 2017

1/4*Lnx-1/8*Ln(x^2+4)+C=1/8*Ln(x^2/(x^2+4))+C14lnx18ln(x2+4)+C=18ln(x2x2+4)+C

Explanation:

int dx/(x^3+4x)dxx3+4x

=int dx/[x*(x^2+4)]dxx(x2+4)

=1/4*int (4*dx)/[x*(x^2+4)]144dxx(x2+4)

=1/4*int [(x^2+4)*dx]/[x(x^2+4)]14(x2+4)dxx(x2+4)-1/4*int [x^2*dx]/[x(x^2+4)]14x2dxx(x2+4)

=1/4*int (dx)/x14dxx-1/4*int (x*dx)/(x^2+4)14xdxx2+4

=1/4*Lnx-1/8*Ln(x^2+4)+C14lnx18ln(x2+4)+C

=1/8*Ln(x^2/(x^2+4))+C18ln(x2x2+4)+C

Nov 13, 2017

1/8ln|x^2/(x^2+4)|+C.18lnx2x2+4+C.

Explanation:

Here is another way to solve the Problem, but without the

use of Partial Fractions.

Let, I=int1/(x^3+4x)dx=int1/{x(x^2+4)}dx=intx/{x^2(x^2+4)}dx,I=1x3+4xdx=1x(x2+4)dx=xx2(x2+4)dx, or,

I=1/2int(2x)/{x^2(x^2+4)}dx.I=122xx2(x2+4)dx.

Subst. x^2=t rArr 2xdx=dt.x2=t2xdx=dt.

:. I=1/2int1/{t(t+4)}dt=1/2int1/(t^2+4t)dt,

=1/2int1/{(t^2+4t+4-4)}dt,

=1/2int1/{(t+2)^2-2^2}dt.

Since, int1/(y^2-a^2)dy=1/(2a)ln|(y-a)/(y+a)|,

I=1/2*1/(2*2)ln|{(t+2)-2}/{(t+2)+2}|,

=1/8ln|t/(t+4)|,

rArr I=1/8ln|x^2/(x^2+4)|+C.