How do you integrate 1 / (x(x^4+1)) using partial fractions?

2 Answers
Dec 8, 2017

The answer is =ln(|x|)-1/4ln(x^4+1)+C

Explanation:

Perform the decomposition into partial fractions

1/(x(x^4+1))=A/x+(Bx^3+C)/(x^4+1)

=(A(x^4+1)+x(Bx^3+C))/(x(x^4+1))

The denominators are the same, compare the numerators

1=A(x^4+1)+x(Bx^3+C)

Let x=0, =>, 1=A

Coefficients of x^4

0=A+B, =>, B=-A=-1

Coefficients of x

0=C

Therefore,

1/(x(x^4+1))=1/x+(-x^3)/(x^4+1)

So,

int(dx)/(x(x^4+1))=intdx/x-int(x^3dx)/(x^4+1)

=ln(|x|)-int(x^3dx)/(x^4+1)

Perform the second part by substitution

Let u=x^4+1, =>, du=4x^3dx

So,

int(x^3dx)/(x^4+1)=1/4int(du)/u

=1/4lnu

=1/4ln(x^4+1)

Finally,

int(dx)/(x(x^4+1))=ln(|x|)-1/4ln(x^4+1)+C

Dec 8, 2017

int dx/[x*(x^4+1)]=Lnx-1/4Ln(x^4+1)+C

Explanation:

int dx/[x*(x^4+1)]

=int ((x^4+1)*dx)/[x(x^4+1)]-int (x^4*dx)/[x(x^4+1)]

=int (dx)/x-int (x^3*dx)/(x^4+1)

=Lnx-1/4int (4x^3*dx)/(x^4+1)

=Lnx-1/4Ln(x^4+1)+C