How do you integrate 10(x1)(x2+9)dx?

1 Answer
Jun 17, 2015

10(x1)(x2+9)=1x1+x1x2+9=1x1xx2+91x2+9

Explanation:

10(x1)(x2+9)=Ax1+Bx+Cx2+9

So we want: Ax2+9A+Bx2Bx+CxC=10
Hence:
A+B=0
B+C=0
9AC=10

The second equation gives us: B=C, so
A+C=0
9AC=10, adding gets us:

10A=10, so A=1 and B=C=1

And 10(x1)(x2+9)=1x1+x1x2+9=1x1xx2+91x2+9,

so

10(x1)(x2+9)dx=1x1dxxx2+9dx1x2+9dx

=ln|x1|12ln(x2+9)13tan1(x3)+C