How do you integrate (2-x)/(x^2+5x)2xx2+5x using partial fractions?

1 Answer
Nov 19, 2016

The answer is =2/(5x)-7/(5(x+5))=25x75(x+5)

Explanation:

Let's go to the decomposition in partial fractions

(2-x)/(x^2+5x)=(2-x)/((x)(x+5))2xx2+5x=2x(x)(x+5)

=A/x+B/(x+5)=(A(x+5)+Bx)/(x(x+5))=Ax+Bx+5=A(x+5)+Bxx(x+5)

so, (2-x)=A(x+5)+Bx(2x)=A(x+5)+Bx

Let x=0x=0, =>2=5A2=5A ; => , A=2/5A=25

Let x=-5x=5 ; => , 7=-5B7=5B ; => , B=-7/5B=75

(2-x)/(x^2+5x)=(2/5)/x+(-7/5)/(x+5)=2xx2+5x=25x+75x+5=