How do you integrate 2x2+4x+12x2+7x+10 using partial fractions?

1 Answer
Mar 13, 2017

The answer is =2x14ln(|x+5|)+4ln(|x+2|)+C

Explanation:

The numerator is

2x2+4x+12=2(x2+2x+6)

We perform a long division

aaaax2+2x+6aaaaax2+7x+10

aaaax2+7x+10aaaa1

aaaaaa05x4

Therefore

2x2+4x+12x2+7x+10=2(15x+4x2+7x+10)

We factorise the denominator

x2+7x+10=(x+5)(x+2)

We can perform the decomposition into partial fractions

5x+4x2+7x+10=5x+4(x+5)(x+2)

=Ax+5+Bx+2=A(x+2)+B(x+5)(x+5)(x+2)

The denominators are the same, we compare the numerators

5x+4=A(x+2)+B(x+5)

Let x=5, , 21=3A, , A=7

Let x=2, , 6=3B, , B=2

So,

2x2+4x+12x2+7x+10=2(1(7x+52x+2))

Therefore,

(2x2+4x+12)dxx2+7x+10=2(1(7x+52x+2))dx

=2dx14dxx+5+4dxx+2

=2x14ln(|x+5|)+4ln(|x+2|)+C