How do you integrate (2x-82)/(x^2+2x-48) dx2x82x2+2x48dx using partial fractions?

1 Answer
Oct 15, 2016

7ln(x+8)-5ln(x-6)+C

Explanation:

int(2x-82)dx/(x^2+2x-48)(2x82)dxx2+2x48
(2x-82)/(x^2+2x-48)=(2x-82)/((x-6)(x+8))=A/(x-6)+B/(x+8) =(A(x+8) +B(x-6))/((x-6)(x+8))2x82x2+2x48=2x82(x6)(x+8)=Ax6+Bx+8=A(x+8)+B(x6)(x6)(x+8)
2x-82=A(x+8) +B(x-6)2x82=A(x+8)+B(x6)
if x=6 ; -70=14A ; A=-5
if x=-8 ; 98=-14B , B=7
int(2x-82)dx/(x^2+2x-48)=int7dx/(x+8)-int5dx/(x-6
=7ln(x+8)-5ln(x-6)+C