How do you integrate 3/(x^2+2x+4) using partial fractions?

1 Answer
Feb 18, 2017

int 3/(x^2+2x+4) dx=sqrt(3) arctan((x+1)/sqrt(3)) + C

Explanation:

Rather than partial fractions I would use a substitution.
Complete the square at the denominator:

int 3/(x^2+2x+4) dx= int 3/((x+1)^2+3)dx = int (dx)/ (((x+1)/sqrt3)^2+1)

Now substitute:

t=(x+1)/sqrt(3)

dt = dx/sqrt(3)

int (dx)/ (((x+1)/sqrt3)^2+1) = sqrt(3) int (dt)/(1+t^2) = sqrt(3) arctan t + C

and undoing the substitution:

int 3/(x^2+2x+4) dx=sqrt(3) arctan((x+1)/sqrt(3)) + C