How do you integrate (3x^2+2x)/((x+2)(x^2+4))3x2+2x(x+2)(x2+4) using partial fractions?

1 Answer
Oct 28, 2016

int(3x^2+2x)/((x+2)(x^2+4)) dx= ln(x+2)+ ln(x^2+4)−arctan(x/2)+C 3x2+2x(x+2)(x2+4)dx=ln(x+2)+ln(x2+4)arctan(x2)+C

Explanation:

The partial fraction decomposition will be of the form:

(3x^2+2x)/((x+2)(x^2+4)) -= A/(x+2) + (Bx+C)/(x^2+4) 3x2+2x(x+2)(x2+4)Ax+2+Bx+Cx2+4
:. (3x^2+2x)/((x+2)(x^2+4)) = (A(x^2+4) + (Bx+C)(x+2))/((x+2)(x^2+4))
:. 3x^2+2x = A(x^2+4) + (Bx+C)(x+2)

We now need to find the three coefficients, A,B and C:

Put x=-2=>12-4=A(4+4)+0
:. 8A=8 => A=1

Equating coefficients of x^2 => 3=A+B
:. B=3-1=2

Equating coefficients of constants => 0=4A+2C
:. 2C=-4 => C=-2

So, we have:
(3x^2+2x)/((x+2)(x^2+4)) = 1/(x+2) + (2x-2)/(x^2+4)

And, therefore,
int(3x^2+2x)/((x+2)(x^2+4)) dx= int 1/(x+2) + (2x-2)/(x^2+4) dx
:. int(3x^2+2x)/((x+2)(x^2+4)) dx= int 1/(x+2) dx+ int(2x-2)/(x^2+4) dx

:. int(3x^2+2x)/((x+2)(x^2+4)) dx= ln(x+2)+ ln(x^2+4)−arctan(x/2)+C

I have omitted the derivation of the second interval, as the question is about partial fractions and not integration by substation, you can use http://www.integral-calculator.com/ to get a full step by step.