How do you integrate (3x)/((x+2)(x-1))3x(x+2)(x−1) using partial fractions?
1 Answer
Nov 21, 2016
int (3x)/((x+2)(x-1)) dx = ln(A(x+2)^2|x-1|) ∫3x(x+2)(x−1)dx=ln(A(x+2)2|x−1|)
Explanation:
Let us find the partial fraction decomposition of the integrand:
Let
(3x)/((x+2)(x-1)) -= A/(x+2) + B/(x-1) 3x(x+2)(x−1)≡Ax+2+Bx−1
:. (3x)/((x+2)(x-1)) = ( A(x-1) + B(x+2) ) / ((x+2)(x-1))
:. 3x = A(x-1) + B(x+2)
This is an identity and valid
Put
Put
So the partial fraction decomposition is:
(3x)/((x+2)(x-1)) -= 2/(x+2) + 1/(x-1)
And so the integral can be written as:
int (3x)/((x+2)(x-1)) dx = int 2/(x+2) + 1/(x-1) dx
:. int (3x)/((x+2)(x-1)) dx = 2int 1/(x+2) dx+ int1/(x-1) dx
:. int (3x)/((x+2)(x-1)) dx = 2ln|x+2| + ln|x-1| + lnA (lnA =constant)
:. int (3x)/((x+2)(x-1)) dx = ln(A(x+2)^2|x-1|)