How do you integrate (3x)/((x+2)(x-1))3x(x+2)(x1) using partial fractions?

1 Answer
Nov 21, 2016

int (3x)/((x+2)(x-1)) dx = ln(A(x+2)^2|x-1|) 3x(x+2)(x1)dx=ln(A(x+2)2|x1|)

Explanation:

Let us find the partial fraction decomposition of the integrand:

Let (3x)/((x+2)(x-1)) -= A/(x+2) + B/(x-1) 3x(x+2)(x1)Ax+2+Bx1
:. (3x)/((x+2)(x-1)) = ( A(x-1) + B(x+2) ) / ((x+2)(x-1))
:. 3x = A(x-1) + B(x+2)

This is an identity and valid AA x in RR
Put x=-2 =>-6=-3A + 0 => A=2
Put x=1 => 3=0+B(3) => B=1

So the partial fraction decomposition is:

(3x)/((x+2)(x-1)) -= 2/(x+2) + 1/(x-1)

And so the integral can be written as:

int (3x)/((x+2)(x-1)) dx = int 2/(x+2) + 1/(x-1) dx
:. int (3x)/((x+2)(x-1)) dx = 2int 1/(x+2) dx+ int1/(x-1) dx
:. int (3x)/((x+2)(x-1)) dx = 2ln|x+2| + ln|x-1| + lnA (lnA=constant)
:. int (3x)/((x+2)(x-1)) dx = ln(A(x+2)^2|x-1|)