How do you integrate (3x) / (x-3)^23x(x3)2 using partial fractions?

1 Answer
Nov 2, 2016

The answer is =-9/(x-1)+3ln(x-3)+C=9x1+3ln(x3)+C

Explanation:

Let's start the decomposition in partial fractions
(3x)/(x-3)^2=A/(x-3)^2+B/(x-3)3x(x3)2=A(x3)2+Bx3

=(A+B(x-3))/(x-3)^2=A+B(x3)(x3)2

:. 3x=A+B(x-3)
coefficients of x, B=3
0=A-3B=>A=9

(3x)/(x-3)^2=9/(x-3)^2+3/(x-3)

int(3xdx)/(x-3)^2=int(9dx)/(x-3)^2+int(3dx)/(x-3)

=-9/(x-1)+3ln(x-3)+C