How do you integrate 4(x+2)(x+3)?

1 Answer
Mar 20, 2018

The answer is =4(ln(|x+2|)ln(|x+3|))+C

Explanation:

Perform the decomposition into partial fractions

4(x+2)(x+3)=Ax+2+Bx+3=A(x+3)+B(x+2)(x+2)(x+3)

The denominators are the same, compare the numerators

4=A(x+3)+B(x+2)

Let x=2, , 4=A

Let x=3, , 4=B

Therefore,

4(x+2)(x+3)=4x+2+4x+3

4dx(x+2)(x+3)=4dxx+2+4dxx+3

=4ln(|x+2|)4ln(|x+3|)+C