int 5/(x^2-1)^2*dx
=int 5/[(x+1)*(x-1)]^2*dx
I decomposed integrand into basic fractions,
5/[(x+1)*(x-1)]^2=A/(x+1)+B/(x+1)^2+C/(x-1)+D/(x-1)^2
After expanding denominator,
A*(x^3-x^2-x+1)+B*(x^2-2x+1)+C*(x^3+x^2-x-1)+D*(x^2+2x+1)=5
Set x=-1, so 4B=5 or B=5/4
Set x=1, so 4D=5 or D=5/4
Due to denominator have double roots of -1 and 1, I took derivative both sides,
A*(3x^2-2x-1)+B*(2x-2)+C*(3x^2+2x-1)+D*(2x+2)=0
Set x=-1, so 4A-4B=0 or A=B=5/4
Set x=1, so 4C+4D=0 or C=-D=-5/4
Hence,
int 5/[(x+1)*(x-1)]^2*dx=5/4*int (dx)/(x+1)+5/4*int (dx)/(x+1)^2-5/4*int (dx)/(x-1)+5/4*int (dx)/(x-1)^2
=5/4*Ln(x+1)-5/4*(x+1)^(-1)-5/4*Ln(x-1)-5/4*(x-1)^(-1)+C
=5/4*Ln((x+1)/(x-1))-5/2*x/(x^2-1)+C