How do you integrate 6x2+1x2(x1)2 using partial fractions?

1 Answer
Oct 22, 2016

The integral is (6x2+1)dxx2(x1)2=1x+2lnx2ln(x1)7x1+C

Explanation:

Let's first determine the coefficients of the partial fractions

6x2+1x2(x1)2=Ax2+Bx+Cx1+D(x1)2

6x2+1x2(x1)2=A(x1)2+Bx(x1)2+Cx2(x1)+Dx2x2(x1)2

(6x2+1)=A(x1)2+Bx(x1)2+Cx2(x1)+Dx2

Let x=0, then 1=A+0+0+0 ; So A=1
Let x=1, then 7=D ; so D=7
Also,coefficients of x3; 0=B+C, ; so B=C
And coefficients of x2 ; 6=A2BC+D
So 6=1+2CC+7 C=2
And B=2

6x2+1x2(x1)2=1x2+2x2x1+7(x1)2

So

(6x2+1)dxx2(x1)2=1dxx2+2dxx2dxx1+7dx(x1)2

=1x+2lnx2ln(x1)7x1+C