How do you integrate f(x)=(x^2+1)/((x^2+6)(x-4)(x-9)) using partial fractions?
1 Answer
Alright, here goes... I got:
int (x^2+1)/((x^2+6)(x-4)(x-9))dx
= -65/3828 ln|x^2 + 6| - 25/(319sqrt6) arctan(x/sqrt6) - 17/110 ln|x - 4| + 82/435 ln|x - 9| + "const"
DISCLAIMER: OBSCENELY LONG ANSWER!
int (x^2 + 1)/((x^2 + 6)(x - 4)(x - 9))dx
= int (Ax + B)/(x^2 + 6) + C/(x - 4) + D/(x - 9)dx
GETTING THE SYSTEM OF EQUATIONS
Now, let's focus on the integrand... get common denominators, and then multiply through by that denominator,
0x^3 + x^2 + 0x + 1
= (Ax + B)(x - 4)(x - 9) + C(x^2 + 6)(x - 9) + D(x^2 + 6)(x - 4)
Now consider only the right-hand side, and distribute terms...
= (Ax + B)(x^2 - 13x + 36) + C(x^3 - 9x^2 + 6x - 54) + D(x^3 - 4x^2 + 6x - 24)
Keep going...
= Ax^3 - 13Ax^2 + 36Ax + Bx^2 - 13Bx + 36B + Cx^3 - 9Cx^2 + 6Cx - 54C + Dx^3 - 4Dx^2 + 6Dx - 24D
Now, group terms by exponent, so that you get
= color(green)(Ax^3 + Cx^3 + Dx^3) color(red)(- 13Ax^2 + Bx^2- 9Cx^2 - 4Dx^2) color(orange)(+ 36Ax - 13Bx + 6Cx + 6Dx) + color(darkblue)(36B - 54C - 24D)
Now, factor it into the proper coefficients to get:
0x^3 + x^2 + 0x + 1 = (color(green)(A + C + D))x^3 + (color(red)(- 13A + B- 9C - 4D))x^2 + (color(orange)(36A - 13B + 6C + 6D))x + (color(darkblue)(36B - 54C - 24D))
From this, we get four equations:
" "1A + 0B + 1C + 1D = 0
-13A + 1B - 9C - 4D = 1
" "36A - 13B + 6C + 6D = 0
" "0A + 36B - 54C - 24D = 1
SOLVING THE SYSTEM OF EQUATIONS
It may be easier to rewrite this into an augmented matrix:
[(1,0,1,1, |, 0),(-13,1,-9,-4, |, 1),(36,-13,6,6, |, 0),(0,36,-54,-24, |, 1)]
If we reduce this down using elementary row operations, we can then more easily obtain each constant
Denote
stackrel(-36R_1 + R_3" ")(->) [(1,0,1,1, |, 0),(-13,1,-9,-4, |, 1),(0,-13,-30,-30, |, 0),(0,36,-54,-24, |, 1)]
stackrel(13R_1 + R_2" ")(->) [(1,0,1,1, |, 0),(0,1,4,9, |, 1),(0,-13,-30,-30, |, 0),(0,36,-54,-24, |, 1)]
stackrel(13R_2 + R_3" ")(->) [(1,0,1,1, |, 0),(0,1,4,9, |, 1),(0,0,22,87, |, 13),(0,36,-54,-24, |, 1)]
stackrel(-36R_2 + R_4" ")(->) [(1,0,1,1, |, 0),(0,1,4,9, |, 1),(0,0,22,87, |, 13),(0,0,-198,-348, |, -35)]
I got tired of reducing it, so we currently have:
A + C + D = 0
B + 4C + 9D = 1
22C + 87D = 13
198C + 348D = 35
Solving more explicitly, take the third equation:
C = 13/22 - 87/22D
Plug into the fourth:
198(13/22 - 87/22D) + 348D = 35
117 - 783D + 348D = 35
82 = 435D
color(green)(D = 82/435)
Yikes. Now, find
22C + 87(82/435) = 13
22C + 82/5 = 13
color(green)(C) = (65 - 82)/5/22
= color(green)(-17/110)
Now plug into the first equation to get
color(green)(A) = -C - D = 17/110 - 82/435
= 7395/47850 - 9020/47850
= -1625/47850
= color(green)(-65/1914)
Lastly, find
B + 4(-17/110) + 9(82/435) = 1
color(green)(B) = 1 + 68/110 - 738/435
= 47850/47850 + (29580 - 81180)/(47850)
= -3750/47850
= color(green)(-25/319)
SETTING UP THE RESULTANT INTEGRAL
So far, we have found:
(A,B,C,D) = (-65/1914, -25/319, -17/110, 82/435)
Therefore, the resultant integral is:
int (x^2 + 1)/((x^2 + 6)(x - 4)(x - 9))dx
= int (-(65)/1914x - 25/319)/(x^2 + 6) -17/110 1/(x - 4) + 82/435 1/(x - 9)dx
= -int (65/1914x + 25/319)/(x^2 + 6)dx - 17/110 int 1/(x - 4)dx + 82/435 int 1/(x - 9)dx
SOLVING EACH PART OF THE BEGINNING INTEGRAL
Call these integrals
int (x^2 + 1)/((x^2 + 6)(x - 4)(x - 9))dx = -I_1 - I_2 + I_3 + "const"
INTEGRALS 2 AND 3
The last two are straightforward:
I_2 = 17/110 ln|x - 4|
I_3 = 82/435 ln|x - 9|
INTEGRAL 1
Now let's figure out the first one... Getting common denominators and rewriting it, we get:
I_1 = int (65/1914x + 25/319)/(x^2 + 6)dx
= int (5(13x + 30))/(1914(x^2 + 6))dx
= 5/1914 int (13x + 30)/(x^2 + 6)dx
= 5/1914 int (12x)/(x^2 + 6)dx + 5/1914 int (x + 30)/(x^2 + 6)dx
= 5/1914 int (12x)/(x^2 + 6)dx + 5/3828 int (2x + 60)/(x^2 + 6)dx
= 5/1914 int (12x)/(x^2 + 6)dx + 5/3828 int (2x)/(x^2 + 6)dx + 25/319 int 1/(x^2 + 6)dx
The first two parts of
5/1914 int (12x)/(x^2 + 6)dx = 15/957 ln|x^2 + 6|
5/3828 int (2x)/(x^2 + 6)dx = 5/3828 ln |x^2 + 6|
The third part of
25/319 int 1/(x^2 + 6) = 25/319 int 1/6 1/((x//sqrt6)^2 + 1)
=> 25/319 int 1/(x^2 + 6)dx = 25/(319sqrt6)arctan(x/sqrt6)
So, the integral
I_1 = int (65/1914x + 25/319)/(x^2 + 6)dx
= 15/957 ln|x^2 + 6| + 5/3828 ln |x^2 + 6| + 25/(319sqrt6) arctan(x/sqrt6)
= 65/3828 ln|x^2 + 6| + 25/(319sqrt6) arctan(x/sqrt6)
OVERALL INTEGRAL
We finally put this all together:
color(blue)(int (x^2 + 1)/((x^2 + 6)(x - 4)(x - 9))dx)
= -int (65/1914x + 25/319)/(x^2 + 6)dx - 17/110 int 1/(x - 4)dx + 82/435 int 1/(x - 9)dx
= -I_1 - I_2 + I_3 + "const"
= color(blue)(overbrace(-65/3828 ln|x^2 + 6| - 25/(319sqrt6) arctan(x/sqrt6))^(-I_1) - overbrace(17/110 ln|x - 4|)^(I_2) + overbrace(82/435 ln|x - 9|)^(I_3) + "const")
Well, it worked! [Wolfram Alpha agrees.](http://www.wolframalpha.com/input/?i=derivative+of+-65%2F3828+ln%7Cx%5E2+%2B+6%7C+-+25%2F(319sqrt6)+arctan(x%2Fsqrt6)+-+17%2F110+ln%7Cx+-+4%7C+%2B+82%2F435+ln%7Cx+-+9%7C)