How do you integrate f(x)=(x-2)/((x^2+5)(x-3)(x-1))f(x)=x2(x2+5)(x3)(x1) using partial fractions?

1 Answer
Dec 22, 2016

The answer is =1/12ln(∣x-1∣)+1/28ln(∣x-3∣)-5/84ln(x^2+5)- 4/(21sqrt5)arctan(x/sqrt5)+C=112ln(x1)+128ln(x3)584ln(x2+5)4215arctan(x5)+C

Explanation:

Let's perform the decomposition into partial fractions

(x-2)/((x-1)(x-3)(x^2+5))=A/(x-1)+B/(x-3)+(Cx+D)/(x^2+5)x2(x1)(x3)(x2+5)=Ax1+Bx3+Cx+Dx2+5

=(A(x-3)(x^2+5)+B(x-1)(x^2+5)+(Cx+D)(x-1)(x-3))/((x-1)(x-3)(x^2+5))=A(x3)(x2+5)+B(x1)(x2+5)+(Cx+D)(x1)(x3)(x1)(x3)(x2+5)

Therefore,

x-2=A(x-3)(x^2+5)+B(x-1)(x^2+5)+(Cx+D)(x-1)(x-3)x2=A(x3)(x2+5)+B(x1)(x2+5)+(Cx+D)(x1)(x3)

Let x=1x=1, =>, -1=-12A1=12A, =>, A=1/12A=112

Let x=3x=3, =>, 1=28B1=28B, =>, B=1/28B=128

Coefficients of x^3x3, =>, 0=A+B+C0=A+B+C

C=-5/42C=542

Let x=0x=0, =>, -2=-15A-5B+3D2=15A5B+3D

3D=15A+5B-2=15/12+5/28-2=-4/73D=15A+5B2=1512+5282=47

D=-4/21D=421

Therefore,

(x-2)/((x-1)(x-3)(x^2+5))=(1/12)/(x-1)+(1/28)/(x-3)+(-5/42x-4/21)/(x^2+5)x2(x1)(x3)(x2+5)=112x1+128x3+542x421x2+5

=(1/12)/(x-1)+(1/28)/(x-3)-1/42(5x+8)/(x^2+5)=112x1+128x31425x+8x2+5

So,

I=int((x-2)dx)/((x-1)(x-3)(x^2+5))=1/12int(dx)/(x-1)+1/28int(dx)/(x-3)-1/42int((5x+8)dx)/(x^2+5)I=(x2)dx(x1)(x3)(x2+5)=112dxx1+128dxx3142(5x+8)dxx2+5

=1/12ln(∣x-1∣)+1/28ln(∣x-3∣)-1/42(5int(xdx)/(x^2+5)+8int(dx)/(x^2+5))=112ln(x1)+128ln(x3)142(5xdxx2+5+8dxx2+5)

Let u=x^2+5u=x2+5, =>, du=2xdxdu=2xdx

int(xdx)/(x^2+5)=1/2 int (du)/u=1/2lnu=1/2ln(∣x^2+5∣)xdxx2+5=12duu=12lnu=12ln(x2+5)

Let v=x/sqrt5v=x5, =>, dv=dx/sqrt5dv=dx5

8int(dx)/(x^2+5)=8/sqrt5int(dv)/(v^2+1)8dxx2+5=85dvv2+1

Let v=tanthetav=tanθ, dv=sec^2theta d thetadv=sec2θdθ

and 1+tan^2theta=sec^2theta1+tan2θ=sec2θ

So,

8/sqrt5int(dv)/(v^2+1)=8/sqrt5int(sec^2theta/sec^2thetad theta)85dvv2+1=85(sec2θsec2θdθ)

=8/sqrt5theta=8/sqrt5arctanv=8/sqrt5arctan(x/sqrt5)=85θ=85arctanv=85arctan(x5)

Putting it all together

I=1/12ln(∣x-1∣)+1/28ln(∣x-3∣)-5/84ln(x^2+5)- 4/(21sqrt5)arctan(x/sqrt5)+CI=112ln(x1)+128ln(x3)584ln(x2+5)4215arctan(x5)+C