Let's perform the decomposition into partial fractions
(x-2)/((x-1)(x-3)(x^2+5))=A/(x-1)+B/(x-3)+(Cx+D)/(x^2+5)x−2(x−1)(x−3)(x2+5)=Ax−1+Bx−3+Cx+Dx2+5
=(A(x-3)(x^2+5)+B(x-1)(x^2+5)+(Cx+D)(x-1)(x-3))/((x-1)(x-3)(x^2+5))=A(x−3)(x2+5)+B(x−1)(x2+5)+(Cx+D)(x−1)(x−3)(x−1)(x−3)(x2+5)
Therefore,
x-2=A(x-3)(x^2+5)+B(x-1)(x^2+5)+(Cx+D)(x-1)(x-3)x−2=A(x−3)(x2+5)+B(x−1)(x2+5)+(Cx+D)(x−1)(x−3)
Let x=1x=1, =>⇒, -1=-12A−1=−12A, =>⇒, A=1/12A=112
Let x=3x=3, =>⇒, 1=28B1=28B, =>⇒, B=1/28B=128
Coefficients of x^3x3, =>⇒, 0=A+B+C0=A+B+C
C=-5/42C=−542
Let x=0x=0, =>⇒, -2=-15A-5B+3D−2=−15A−5B+3D
3D=15A+5B-2=15/12+5/28-2=-4/73D=15A+5B−2=1512+528−2=−47
D=-4/21D=−421
Therefore,
(x-2)/((x-1)(x-3)(x^2+5))=(1/12)/(x-1)+(1/28)/(x-3)+(-5/42x-4/21)/(x^2+5)x−2(x−1)(x−3)(x2+5)=112x−1+128x−3+−542x−421x2+5
=(1/12)/(x-1)+(1/28)/(x-3)-1/42(5x+8)/(x^2+5)=112x−1+128x−3−1425x+8x2+5
So,
I=int((x-2)dx)/((x-1)(x-3)(x^2+5))=1/12int(dx)/(x-1)+1/28int(dx)/(x-3)-1/42int((5x+8)dx)/(x^2+5)I=∫(x−2)dx(x−1)(x−3)(x2+5)=112∫dxx−1+128∫dxx−3−142∫(5x+8)dxx2+5
=1/12ln(∣x-1∣)+1/28ln(∣x-3∣)-1/42(5int(xdx)/(x^2+5)+8int(dx)/(x^2+5))=112ln(∣x−1∣)+128ln(∣x−3∣)−142(5∫xdxx2+5+8∫dxx2+5)
Let u=x^2+5u=x2+5, =>⇒, du=2xdxdu=2xdx
int(xdx)/(x^2+5)=1/2 int (du)/u=1/2lnu=1/2ln(∣x^2+5∣)∫xdxx2+5=12∫duu=12lnu=12ln(∣x2+5∣)
Let v=x/sqrt5v=x√5, =>⇒, dv=dx/sqrt5dv=dx√5
8int(dx)/(x^2+5)=8/sqrt5int(dv)/(v^2+1)8∫dxx2+5=8√5∫dvv2+1
Let v=tanthetav=tanθ, dv=sec^2theta d thetadv=sec2θdθ
and 1+tan^2theta=sec^2theta1+tan2θ=sec2θ
So,
8/sqrt5int(dv)/(v^2+1)=8/sqrt5int(sec^2theta/sec^2thetad theta)8√5∫dvv2+1=8√5∫(sec2θsec2θdθ)
=8/sqrt5theta=8/sqrt5arctanv=8/sqrt5arctan(x/sqrt5)=8√5θ=8√5arctanv=8√5arctan(x√5)
Putting it all together
I=1/12ln(∣x-1∣)+1/28ln(∣x-3∣)-5/84ln(x^2+5)- 4/(21sqrt5)arctan(x/sqrt5)+CI=112ln(∣x−1∣)+128ln(∣x−3∣)−584ln(x2+5)−421√5arctan(x√5)+C