How do you integrate #f(x)=(x^3+5x)/((x^2-1)(x-3)(x+9))# using partial fractions?

1 Answer
Apr 11, 2016

#int (x^3+5x)/((x^2-1)(x-3)(x+9)) dx#

#=-3/20 ln abs(x-1) -3/32 ln abs(x+1) + 7/16 ln abs(x-3) + 129/160 ln abs(x+9) + C#

Explanation:

The denominator factors into distinct linear factors as:

#(x-1)(x+1)(x-3)(x+9)#

So we can look for a partial fraction decomposition of the form:

#(x^3+5x)/((x^2-1)(x-3)(x+9))#

#=A/(x-1)+B/(x+1)+C/(x-3)+D/(x+9)#

#=(A(x+1)(x-3)(x+9)+B(x-1)(x-3)(x+9)+C(x^2-1)(x+9)+D(x^2-1)(x-3))/((x^2-1)(x-3)(x+9))#

#=(A(x^3+7x^2-21x-27)+B(x^3+5x^2-33x+27)+C(x^3+9x^2-x-9)+D(x^3-3x^2-x+3))/((x^2-1)(x-3)(x+9))#

#=((A+B+C+D)x^3+(7A+5B+9C-3D)x^2+(-21A-33B-C-D)x+(-27A+27B-9C+3D))/((x^2-1)(x-3)(x+9))#

Equating coefficients, we get the following system of linear equations:

#{ (A+B+C+D = 1), (7A+5B+9C-3D = 0), (-21A-33B-C-D = 5), (-27A+27B-9C+3D = 0) :}#

This can be expressed in matrix form as:

#((1, 1, 1, 1, 1), (7, 5, 9, -3, 0), (-21, -33, -1, -1, 5), (-27, 27, -9, 3, 0))#

Perform a sequence of row operations on the matrix to get the left hand #4 xx 4# submatrix into the form of an identity matrix. Then the right hand column will contain the values of #A, B, C# and #D#.

Add/subtract multiples of the first row to/from the others to get:

#((1, 1, 1, 1, 1), (0, -2, 2, -10, -7), (0, -12, 20, 20, 26), (0, 54, 18, 30, 27))#

Add/subtract multiples of the second row to/from the third and fourth rows to get:

#((1, 1, 1, 1, 1), (0, -2, 2, -10, -7), (0, 0, 8, 80, 68), (0, 0, 72, -240, -162))#

Subtract #9# times the third row from the fourth row to get:

#((1, 1, 1, 1, 1), (0, -2, 2, -10, -7), (0, 0, 8, 80, 68), (0, 0, 0, -960, -774))#

Divide the #2#nd, #3#rd and #4#th rows by values to make the diagonal all #1#'s:

#((1, 1, 1, 1, 1), (0, 1, -1, 5, 7/2), (0, 0, 1, 10, 17/2), (0, 0, 0, 1, 129/160))#

Subtract row #2# from row #1# to get:

#((1, 0, 2, -4, -5/2), (0, 1, -1, 5, 7/2), (0, 0, 1, 10, 17/2), (0, 0, 0, 1, 129/160))#

Add/subtract multiples of row #3# to/from rows #1# and #2# to get:

#((1, 0, 0, -24, -39/2), (0, 1, 0, 15, 12), (0, 0, 1, 10, 17/2), (0, 0, 0, 1, 129/160))#

Add/subtract multiples of row #4# to/from rows #1#, #2# and #3# to get:

#((1, 0, 0, 0, -3/20), (0, 1, 0, 0, -3/32), (0, 0, 1, 0, 7/16), (0, 0, 0, 1, 129/160))#

Hence:

#{ (A=-3/20), (B=-3/32), (C=7/16), (D=129/160) :}#

So:

#int (x^3+5x)/((x^2-1)(x-3)(x+9)) dx#

#=int A/(x-1)+B/(x+1)+C/(x-3)+D/(x+9) dx#

#=-3/20 ln abs(x-1) -3/32 ln abs(x+1) + 7/16 ln abs(x-3) + 129/160 ln abs(x+9) + "constant"#