How do you integrate f(x)=x/((x^2+2)(x+4)(x-7))f(x)=x(x2+2)(x+4)(x7) using partial fractions?

1 Answer
Jul 27, 2017

int \ f(x) \ dx = -29/1700ln(x^2+1) - 3/850arctanx + 4/187ln|x+4| + 7/550ln|x-7| + C

Explanation:

We have:

f(x) = x/( (x^2+1) (x+4) (x-7) )

We can decompose into partial fractions, which will be of the form:

x/( (x^2+1) (x+4) (x-7) ) = (Ax+B)/(x^2+1) + C/(x+4) + D/(x-7)

And after putting over a common denominator we end up with:

x -= (Ax+B)(x+4)(x-7) + C(x^2+1)(x-7) + D(x^2+1)(x+4)

Where the coefficients A,B,C,D are constants to be found.

We can use direct substitution

x=7 => 7=0+0+D(49+1)(7+4) =>D=7/550
x=-4 => -4=0+C(16+1)(-4-7)+0=>C=4/187

And we can compare coefficients:

x^3: 0 = A+C+D => A=-29/850
x^0: 0=-28B-7C+4D => B=-3/850

Thus we have:

f(x) = (-29/850x-3/850)/(x^2+1) + (4/187)/(x+4) + (7/550)/(x-7)

And so:

int f(x) dx= -1/850int(29x+3)/(x^2+1) dx + 4/187int1/(x+4)dx + 7/550int1/(x-7) dx
" "= -1/850int(29x+3)/(x^2+1) dx + 4/187ln|x+4| + 7/550ln|x-7| + C

We need further work for the first integral:

int \ (29x+3)/(x^2+1) dx = int \ (29x)/(x^2+1) + 3/(x^2+1) dx
" " = 29/2int \ (2x)/(x^2+1) dx + 3int 1/(x^2+1) dx
" " = 29/2ln|x^2+1| + 3arctanx

Combining we get:

int \ f(x) \ dx = -1/850 {29/2ln|x^2+1| + 3arctanx} + 4/187ln|x+4| + 7/550ln|x-7| + C

And, as x^2+1 gt 0 AA x in RR we have:

int \ f(x) \ dx = -29/1700ln(x^2+1) - 3/850arctanx + 4/187ln|x+4| + 7/550ln|x-7| + C