How do you integrate f(x)=x/((x^2+2)(x+4)(x-7))f(x)=x(x2+2)(x+4)(x−7) using partial fractions?
1 Answer
int \ f(x) \ dx = -29/1700ln(x^2+1) - 3/850arctanx + 4/187ln|x+4| + 7/550ln|x-7| + C
Explanation:
We have:
f(x) = x/( (x^2+1) (x+4) (x-7) )
We can decompose into partial fractions, which will be of the form:
x/( (x^2+1) (x+4) (x-7) ) = (Ax+B)/(x^2+1) + C/(x+4) + D/(x-7)
And after putting over a common denominator we end up with:
x -= (Ax+B)(x+4)(x-7) + C(x^2+1)(x-7) + D(x^2+1)(x+4)
Where the coefficients
We can use direct substitution
x=7 => 7=0+0+D(49+1)(7+4) =>D=7/550
x=-4 => -4=0+C(16+1)(-4-7)+0=>C=4/187
And we can compare coefficients:
x^3: 0 = A+C+D => A=-29/850
x^0: 0=-28B-7C+4D => B=-3/850
Thus we have:
f(x) = (-29/850x-3/850)/(x^2+1) + (4/187)/(x+4) + (7/550)/(x-7)
And so:
int f(x) dx= -1/850int(29x+3)/(x^2+1) dx + 4/187int1/(x+4)dx + 7/550int1/(x-7) dx
" "= -1/850int(29x+3)/(x^2+1) dx + 4/187ln|x+4| + 7/550ln|x-7| + C
We need further work for the first integral:
int \ (29x+3)/(x^2+1) dx = int \ (29x)/(x^2+1) + 3/(x^2+1) dx
" " = 29/2int \ (2x)/(x^2+1) dx + 3int 1/(x^2+1) dx
" " = 29/2ln|x^2+1| + 3arctanx
Combining we get:
int \ f(x) \ dx = -1/850 {29/2ln|x^2+1| + 3arctanx} + 4/187ln|x+4| + 7/550ln|x-7| + C
And, as
int \ f(x) \ dx = -29/1700ln(x^2+1) - 3/850arctanx + 4/187ln|x+4| + 7/550ln|x-7| + C