How do you integrate 1(1+x)(12x) using partial fractions?

1 Answer
Mar 16, 2016

1(1+x)(12x)dx

= 13ln(1+x)13ln(12x)+c

Explanation:

To integrate, we should first convert 1(1+x)(12x) in to partial fractions. Let

1(1+x)(12x)A1+x+B12x. Simplifying RHS

=A(12x)+B(1+x)(1+x)(12x) or

=A2Ax+B+Bx(1+x)(12x)

=(B2A)x+(A+B)(x+3)(x7)(x+4)

Hence B2A=0, A+B=1 or A=1B

Hence B2(1B)=0 or 3B=2 or

B=23 and hence A=13

Hence 1(1+x)(12x)13(1+x)+23(12x)

Hence 1(1+x)(12x)dx =

[13(1+x)+23(12x)]dx

Now one can use the identity (1ax+b)dx=1aln(ax+b)

Hence, [13(1+x)+23(12x)]dx

= 13ln(1+x)+23×(12)ln(12x)+c

= 13ln(1+x)13ln(12x)+c