How do you integrate int (1-2x^2)/((x-2)(x+7)(x+1)) using partial fractions?

1 Answer
Sep 21, 2017

-1/9ln|(x-2)|+5/18ln|(x+7)|-1/6ln|(x+1)|+C

Explanation:

int(1-2x)/((x-2)(x+7)(x+1))dx

consider the integrand. The denominators are all linear so we have a straightforward identity

(1-2x)/((x-2)(x+7)(x+1))-+A/(x-2)+B/(x+7)+C/(x+1)

multiply both sides by((x-2)(x+7)(x+1))

after cancelling we end up with

(1-2x)-=A(x+7)(x+1)+B(x-2)(x+1)+C(x-2)(x+7)

"let " x=2

1-4=Axx9xx3+0+0

-3=27A

=>A=-1/9

"let "x=-7

1-(2xx-7)=0+Bxx-9xx-6+0

15=54B

=>B=15/54=5/18

"let "x=-1

1-(2xx-1)=0+0+Cxx(-1-2)(-1+7)

=>3=-18C

=>C=-1/6

:.int(1-2x)/((x-2)(x+7)(x+1))dx

int(-1/(9(x-2))+5/(18(x+7))-1/(6(x+1)))dx

usingcolor(blue)(int(f'(x))/(f(x))dx=ln|f(x)|+C)

we have

-1/9ln|(x-2)|+5/18ln|(x+7)|-1/6ln|(x+1)|+C