How do you integrate int 1/((3 + x) (1 - x)) using partial fractions?

1 Answer
May 13, 2016

int1/((3+x)(1-x))dx=1/4ln(3+x)-1/4ln(1-x)

Explanation:

Let us first find partial fractions of 1/((3+x)(1-x)) and for this let

1/((3+x)(1-x))hArrA/(3+x)+B/(1-x) or

1/((3+x)(1-x))hArr(A(1-x)+B(3+x))/((3+x)(1-x)) or

1/((3+x)(1-x))hArr((B-A)x+(A+3B))/((3+x)(1-x)) or

Hence B-A=0 or A=B and A+3B=1, i.e.A=B=1/4

Hence int1/((3+x)(1-x))dx=int[1/(4(3+x))+1/(4(1-x))]dx or

= 1/4int1/(3+x)dx+1/4int1/(1-x)dx

= 1/4ln(3+x)-1/4ln(1-x)