How do you integrate int 1/(r^2-1)dr∫1r2−1dr using partial fractions? Calculus Techniques of Integration Integral by Partial Fractions 1 Answer Konstantinos Michailidis Feb 27, 2016 It is int 1/(r^2-1)dr=1/2*int (1/(r-1)-1/(r+1))dr=1/2*(lnabs(r-1)-lnabs(r+1))+c= 1/2*lnabs((r-1)/(r+1))+c∫1r2−1dr=12⋅∫(1r−1−1r+1)dr=12⋅(ln|r−1|−ln|r+1|)+c=12⋅ln∣∣∣r−1r+1∣∣∣+c Answer link Related questions How do I find the partial fraction decomposition of (2x)/((x+3)(3x+1))2x(x+3)(3x+1) ? How do I find the partial fraction decomposition of (1)/(x^3+2x^2+x1x3+2x2+x ? How do I find the partial fraction decomposition of (x^4+1)/(x^5+4x^3)x4+1x5+4x3 ? How do I find the partial fraction decomposition of (x^4)/(x^4-1)x4x4−1 ? How do I find the partial fraction decomposition of (t^4+t^2+1)/((t^2+1)(t^2+4)^2)t4+t2+1(t2+1)(t2+4)2 ? How do I find the integral intt^2/(t+4)dt∫t2t+4dt ? How do I find the integral int(x-9)/((x+5)(x-2))dx∫x−9(x+5)(x−2)dx ? How do I find the integral int1/((w-4)(w+1))dw∫1(w−4)(w+1)dw ? How do I find the integral intdx/(x^2(x-1)^2)∫dxx2(x−1)2 ? How do I find the integral int(x^3+4)/(x^2+4)dx∫x3+4x2+4dx ? See all questions in Integral by Partial Fractions Impact of this question 3520 views around the world You can reuse this answer Creative Commons License