How do you integrate int [1/ (s (s - 1)^2)] using partial fractions?

1 Answer
Sep 8, 2016

int1/(s(s-1)^2)ds=lns-ln(s-1)-1/(s-1)

Explanation:

Partial fractions of 1/(s(s-1)^2)hArrA/s+B/(s-1)+C/(s-1)^2

= (A(s-1)^2+Bs(s-1)+Cs)/(s(s-1)^2)

= (A(s^2-2s+1)+Bs^2-Bs+Cs)/(s(s-1)^2)

= (s^2(A+B)+s(-2A-B+C)+A)/(s(s-1)^2)

Hence A=1, A+B=0 and -2A-B+C=0

or A=1, B=-1 and C=1 and

1/(s(s-1)^2)=1/s-1/(s-1)+1/(s-1)^2

Hence int1/(s(s-1)^2)ds=int1/sds-int1/(s-1)ds+int1/(s-1)^2ds

lns-ln(s-1)-1/(s-1)